51985
 MSX-SYSTEMII APPLICATION MANUAL

TABLE OF CONTENTS

1. MSX-SYSTEM II
Overview 1
Features 1
2. Functional overview
Pin layout 2
Pin functions 3
Block diagram 5
3. Description of functions
Selection of functions 6
Back-up and reset 7
Expansion slot register 8
Address map and slot expansion 9
I/O addresses and functions 10
Bit allocations of keyboard and slot designation registers 11
Back-up RAM (8 bit X 16) 12
Bit map function 12
Printer 13
Kanji ROM select signal and system control 15
Mapper 15
Keyboard bus direction 16
4. SSG and general purpose ports
Register array 17
General purpose ports 18
Setting of music frequencies 18
Setting of noise generator 19
Settings of mixer 19
Level control 20
Setting of envelope frequency 20
Envelope shape control 21
D-A Convertor 22
Sound output SSGS,NDL and SSGSNDR 23
5. Clock and RAM
Address allocations and initial state of counters and registers 24
Allocation of addresses and functions 24
Mode setting and alarm/timer EN function 25
Reset control function and $16 \mathrm{~Hz} / 1 \mathrm{~Hz}$ register setting 25
Test registers 25
Setting of $12 / 24$ selector. 26
Setting of leap year 26
Setting and reading the time and calender 26
Alarm setting and reading 27
RAM (4 bit X 26) 27
6. Oscillation circuit 27
7. Voltage characteristics of clock oscillation circuit 28
Temperature characteristics of clock oscillation circuit. 29
8. Back-up voltage and current 30
9. Electrical characteristics 31
10. Recommended operating conditions 31
11. DC characteristics 31
12. AC characteristics
Clock timing 32
Write timing 32
Read timing 32
Reset timing 33
Analog output 33
Timing of M1 cycle, Memory read/write cycle, and I/O cycle 34
13. Precautions for use 40
14. External view 41

1. MSX-SYSTEM II

Overview

The Yamaha S1985 is an LSI device designed for use with MSX2 computers. It is capable of memory control with expansion according to MSX2 specifications taken into account, and control of peripheral equipment such as a VDP, keyboard, printer, etc. It also has a built-in SSG for generation of music signals and a clock.

Features

Slot control can be expanded to slots 0 and 3
Mapper function allowing memory expansion up to 512 K bytes
Built-in MSX2 standard clock functions
16 byte (8 bit) back-up RAM
Registers for foreground and background color reading as bit mapped functions
DRAM refresh can be selected as RAS only refresh and hidden refresh
VDP select signal output
Keyboard access
Two built-in joystick port
Built-in SSG (Yamaha YM2149 equivalent)

Voicing range	$: 8$ octaves
Voicing systems	$: 3$ sine waves voicing systems and 1 noise voicing system
Envelope control	$: 5$ bit
D-A convertor	$: 5$ bit

Bi-directional printer mode
CMOS device with Si gates
100 pin flat plastic package

2. Functional Overview

Pin layout

Pin functions

Pin name	I/O
AB15, AB14, AB7~AB0	i
DB7~DB0	i/o
$\overline{\mathrm{M} 1}$	i
$\overline{\mathrm{RFSH}}$	i
$\overline{\text { MREQ }}$	1
$\overline{\text { IORQ }}$	1
$\overline{\mathrm{RD}}$	1
$\overline{\mathrm{WR}}$	i
WAIT	-
MPX	\bigcirc
$\overline{\mathrm{RAS}}$	\bigcirc
$\overline{\text { CAS }}$	\bigcirc
$\overline{W E}$	\bigcirc
$\overline{\text { SLT33 }}$	0
$\overline{\text { SLT32 }}$	\bigcirc
$\overline{\text { SLT31 }}$	0
$\overline{\text { SLT3/30 }}$	-
$\overline{\text { SLT2 }}$	\bigcirc
$\overline{\text { SLT1 }}$	\bigcirc
$\overline{\text { SLT03/CS01 }}$	0
$\overline{\text { SLT02/CS0 }}$	\bigcirc
SLT01	\bigcirc
$\overline{\text { SLT0/00 }}$	\bigcirc
$\overline{\mathrm{CS} 2}$	\bigcirc
$\overline{\mathrm{CSI}}$	\bigcirc
$\overline{\mathrm{CS1}} 2$	\bigcirc
MA18/KBDIR	-
MA17~14	\bigcirc
YD \sim YA	0
$\overline{\mathrm{X} 7} \sim \overline{\mathrm{X} 0}$	1
$\overline{\text { CAPS }}$	0
KANA	-
CMI	i
CMO	0
REM	-
PBUSY	i
$\overline{\text { PSTB }}$	-
PWR	-
$\overline{\text { PRD }}$	-
PDIR	0
FWD1, FWD2	i
BACK1, BACK?	i

Function
Address bus input (10 bits) for Z80A CPU
Data bus input/output (8 bits) for Z80A CPU
$\overline{M 1}$ input for Z80A CPU
$\overline{\mathrm{RFSH}}$ input for Z80A CPU
$\overline{\text { MREQ input for Z80A CPU }}$
IORQ input for Z80A CPU
$\overline{\mathrm{RD}}$ input for Z80A CPU
$\overline{\mathrm{WR}}$ input for Z80A CPU
$\overline{\text { WAIT }}$ signal output to Z80A CPU (can have wired logic)
Multiplex signal output for DRAM address
DRAMS $\overline{R A S}$ signal output
DRAMS $\overline{C A S}$ signal output
DRAM $\bar{W} \bar{E}$ signal output
Slot \# 33 select signal output
Slot \# 32 select signal output
Slot \# 31 select signal output
Slot \# 3 or 30 select signal output
Slot \# 2 select signal output
Slot \# 1 select signal output
Slot \# 03 select or ROM select $0000 \mathrm{H} \sim 7$ FFFH sigual output
Slot \# 02 select or ROM select $0000 \mathrm{H} \sim 3$ FFFH signal output
Slot \# 01 select signal output
Slot $\# 0$ or 00 select signal output
ROM select $8000 \mathrm{H} \sim$ BFFFH signal output
ROM select $4000 \mathrm{H} \sim 7$ FFFH signal output
ROM select $4000 \mathrm{H} \sim$ BFFFH signal output
Mapper address or keyboard bus direction signal output
Mapper address address signal output
Keyboard drive signal input
Keyboard return signal input
Caps LED signal output
Kana LED signal output
Cassette read signal inpat
Cassette write signal output
Cassette control signal output
Printer busy signal input
Printer strobe signal output
Printer write signal output
Printer read signal output
Printer direction signal output
Joystick FWD signal input (general purpose port input)
Joystick BACK signal input (general purpose port input)

LEFT1, LEFT2	i
RIGHT1, RIGHT2	i
TRGA1, TRGA2	i / o
TRGB1, TRGB2	i / o
STB1, STB2	0
$\overline{\text { VDPSW }}$	0
$\overline{\text { VDPCR }}$	0
$\overline{\text { RANJI }}$	0
RESE	i
PPISND	i
SSGSNDL	0
SSGSNDR	0
\varnothing	0
VDD	i
DVSS	
AVSS	
XIN	i
XOUT	0
ALM	0
BVSS	

Joystick LEFT signal input (general purpose port input) Joystick RIGHT signal input (general purpose port input) Joystick TRGA signal input/output (general purpose port input/output)
Joystick TRGB signal input/output (general purpose port input/output)
General purpose port output
VDP write signal output
VDP read signal output
Kanji ROM select signal output
Signal input for expansion slot designation register control
Reset signal input
PPI sound signal output
SSG sound LEFT signal output
SSG sound RIGHT signal output
Clock signal input
$+5 \mathrm{~V}$
$0^{\prime \prime}$ (GND)
GND for sound generation
Input from clock crystal
Output to clock crystal
Alarm signal output
Power supply for clock back-up

Block diagram

(CONTROL) : $\overline{\mathrm{MI}}, \overline{\mathrm{RFSH}}, \overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$
(MEMORY CONTROL): $\overline{\mathrm{RAS}}, \mathrm{MPX}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{CS1}}, \overline{\mathrm{CS}}, \overline{\mathrm{CS} 12}, \overline{\text { SLT0/00 }}, \overline{\text { SLT01 }}, \overline{\text { SLT02/CS0 }}$, $\overline{\text { SLT03/CSO1 }}, \overline{\text { SLT1 }}, \overline{\text { SLT30/30 }}, \overline{\text { SLT2 }}, \overline{S L T 31}, \overline{\text { SLT32 }}, \overline{\text { SLT33 }}$, MA14, MA15, MA16, MA17, MA18/KBDIR
(PORTI) :FWD1, FWD2, BACK1, BACK2, LEFT1, LEFT2, RIGHT1, RIGHT2.
(PORTO) :STB1, STB2
(PORTI/O) :TRGA1, TRGA2, TRGB1, TRGB2

3. Description of functions

Selection of functions

When the reset signal is input, the levels applied to the keyboard return input pins are latched by the internal reset signals to select the default functions.

Table of initial levels and functions

Pin name	Level	Function
$\overline{\mathrm{X} 2}$	0	RAS only refresh mode selected
	1	Hidden refresh mode selected
$\overline{\mathrm{X} 5}$	0	Mapper address output to MA18/KBDIR pin
	1	Keyboard bus direction output to MA18/KBDIR pin
$\overline{\mathrm{X} 6}$	0	Kana IIS layout
	1	Kana syllabary layout
$\overline{\mathrm{X} 7}$	0	Single wait requested for VDP read or write
	1	Single wait not requested for VDP read or write
$\overline{\mathrm{X}}$	0	
	1	$\overline{\mathrm{SLTO}} / \overline{\mathrm{CSO1}}$ and $\overline{\mathrm{SLTO}} / \overline{\mathrm{CSO}}$ pins output ROM select signals
$\overline{\mathrm{XI}}$	0	Expansion to slot 0
	1	No expansion to slot 0 when $\overline{\mathrm{X3}}=1$

Back-up and reset

This devices uses the BVSS pin of the negative potential side to allow for back-up of the RAM data (4 bit $\times 26$ and 8 bit $\times 16$).
Although a reset occurs when voltage of level " 1 " is applied to the RESET pin, the following precautions must be heeded to prevent loss of data and improper clock operation during switching between the back-up power supply and 5 V power supply, and vice versa.

- When turning on the power supply with the device in the backed- up state, reiease the reset signal only after the level of the 5 V power supply fully approaches 5 V and all input levels to the device have stabilized.
- When switching off the power supply and shifting to the backed- up state, apply the reset signal and shift to back-up when the level of the 5 V power supply starts to drop but is still close to 5 V , and all input signals to the device are still stable.
There are various methods available for switching between the 5 V power supply and back-up power supply. An example of a possibie circuit and its operation are shown below.

As shown in this diagram, there are no problems as the forward direction electrical potential (VF) for the diodes is merely shifted so that voltage to the BVSS pin of the backed-up section is supplied from the 5 V power supply when it is operating, or the back-up battery when it is not. However, when the alarm function is activated and output is fetched from the $\overline{\mathrm{ALM}}$ pin, this current will alter the \sqrt{F} value. This will cause the power supply voltage for the backed-up section to fluctuate according to the output from the $\overline{\mathrm{ALM}}$ pin. This problem can be solved by having the resistance of the load connected to the ALM pin as high as possible, by using a circuit which limits fluctuations in the electrical potential sorresponding to VF in relation to the current from the $\overline{\mathrm{ALM}}$ pin, or by not connecting load resistance to the $\overline{\mathrm{ALM}}$ pin when the alarm function is not used.

Expansion slot register

There are two registers for designation of the expansion slot: one for slot 0 and the other for slot 3. Expansion to both of the slots at the same time is possible. The inverse value of the contents is output when the registers are read. The address of the registers is $\operatorname{FFFF}(\mathrm{H})$ allowing slot expansion by input of the symbol obtained from NAND logic addresses $A B 8 \sim A B 13$ to the $\overline{\operatorname{RSEL}}$ pin.

The siot expansion function is controlled by the level of the $\overline{\mathrm{X} 1}$ and $\overline{\mathrm{X} 3}$ pins when the device is reset. Refer to section on selection of this function.

Address map and slot expansion

No expansion

Expansion to slot 3

Expansion to slots 0 and 3

Note: The prescribed input is made to the $\overline{\mathrm{RSEL}}$ pin for slot expansion.
The function of the signals marked with asterisks is selected when the device is reset. They cannot be used at the same time when expansion is to slot 0 .

I/O addresses and functions

Function	I/O address	W^{\prime} / R	Description
Back-up RAM	$\begin{aligned} & 40(\mathrm{H}) \\ & 41 \\ & 42 \end{aligned}$	$\begin{gathered} \mathrm{W} / \mathrm{R} \\ \mathrm{w} \\ \mathrm{~W} / \mathrm{R} \end{gathered}$	Manufacturer ID number register Back-up RAM address latch Back-up RAM write/read
Bit map	46 47	$\begin{gathered} w \\ w / R \end{gathered}$	Foreground/background color write Pattern and foreground/background color read
Printer	$\begin{aligned} & 90 \\ & 91 \\ & 93 \end{aligned}$	$\begin{gathered} w / R \\ w / R \\ w \end{gathered}$	Printer strobe write, printer status read Printer data write/read Printer bus direction
VDP	$\begin{aligned} & 98 \sim 9 \mathrm{~F} \\ & 98 \sim 9 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{W} \\ & \mathrm{R} \end{aligned}$	VDP write VDP read
SSG	ABO ABl AB2	w w R	SSG address latch SSG data write SSG data read
Keyboard and Slot designa- tion register	A8 A9 AA $A B$	$\begin{gathered} \mathrm{W} / \mathrm{R} \\ \mathrm{R} \\ \mathrm{w} / \mathrm{R} \\ \mathrm{w} \end{gathered}$	slot designation Keyboard return signal read Keyboard drive, cassette and PPI sound write/read Mode designation
Clock and slot designation	B4 B5	$\begin{gathered} w \\ w / R \end{gathered}$	Clock and back-up RAM address latch Clock and back-up RAM uritejread
Kanji	D8, D9	W/R	Kanji write/read
System control	F5	w	System control
Mapper	$\begin{aligned} & F C \\ & F D \\ & F E \\ & F F \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{R} \\ & \mathrm{w} / \mathrm{R} \\ & \mathrm{w} / \mathrm{R} \\ & \mathrm{w} / \mathrm{R} \end{aligned}$	Mapper register page 0 Mapper register page 1 Mapper register page 2 Mapper register page 3

Bit allocations of keyboard and slot designation registers

\begin{tabular}{|c|c|c|c|c|}
\hline Function \& Bit \& W/R \& \& Description

\hline \multirow[t]{4}{*}{Slot designation register} \& $$
\begin{aligned}
& 0 \\
& 1
\end{aligned}
$$ \& \multirow{4}{*}{W/R} \& \multicolumn{2}{|r|}{Slot designation signal for addresses $0000(\mathrm{H}) \sim 3 \mathrm{FFF}(\mathrm{H})$}

\hline \& 2 \& \& \multicolumn{2}{|r|}{Slot designation signal for addresses 4000 (H) ~ 7FFF(H)}

\hline \& 4
5 \& \& \multicolumn{2}{|r|}{Slot designation signal for addresses 8000 (H) $\sim \operatorname{BFFF}(\mathrm{H})$}

\hline \& 6
7 \& \& \multicolumn{2}{|r|}{Slot designatior. signal for addresses $\mathrm{Co00}(\mathrm{H}) \sim \operatorname{FFFF}(\mathrm{H})$}

\hline Keyboard return \& $$
\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7
\end{aligned}
$$ \& R \& $$
\begin{aligned}
& \overline{X_{0}} \\
& \frac{X_{1}}{1} \\
& \frac{X_{2}}{} \\
& \frac{X_{4}}{4} \\
& \frac{X_{5}}{X_{6}}
\end{aligned}
$$ \& Keyboard return signal

\hline \multirow[t]{5}{*}{Registers for keyboard drive, etc.} \& 0
1
2
3 \& \multirow{5}{*}{W/R} \& YA
YB
YC
YD \& YA $\sim Y D$ signals for keyboard drive

\hline \& 4 \& \& \multicolumn{2}{|r|}{REM signal for cassette control}

\hline \& 5 \& \& \multicolumn{2}{|r|}{CMO signal for cassette write}

\hline \& 6 \& \& \multicolumn{2}{|r|}{$\overline{\text { CAPS signal for CAPS lamp (LED) }{ }^{\text {a }} \text { (}{ }^{\text {a }} \text { (}}$}

\hline \& 7 \& \& \multicolumn{2}{|r|}{PPISND signal for sound}

\hline \multirow[t]{2}{*}{Mode setring} \& 0
1
2
3
4
5
6
7 \& w \& $$
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 1
\end{aligned}
$$ \& The slot designation register and register for keyboard drive and other functions are cleared when the level shown on the left is given. This is the equivalent function to setting the PA and PC pors to output and PB por to inpur for MODE 0 of the 8255A.

\hline \& 0
1
1
3

4
5
6

7 \& W \& | B 0 |
| :--- |
| $\mathrm{~B}_{1}$ |
| $\mathrm{~B}_{2}$ |
| $\mathrm{~B}_{3}$ |
| |
| 0 |
| 0 |
| 0 |
| 0 | \& Bits of the register for keyboard drive, etc., can be set and reset when the level shown on the left is given. $\mathrm{B}_{1} \sim \mathrm{~B}_{3}$ B; express the bit numbers and the bits are set when Bo is " 1 ", and reset when " 0 ".

\hline
\end{tabular}

Back-up RAM (8 bit X 16)

After the ASCII ID number $\mathrm{FE}(\mathrm{H})$ is written to the I/O address $40(\mathrm{H})$, the inverted value of $01(\mathrm{H})$ can be obtained when I / O address $40(\mathrm{H})$ is read, indicating that the back-up RAM (8 bit X 16) and bit map function can be used. If the RAM address ($\mathrm{X0}(\mathrm{H})-\mathrm{XF}(\mathrm{H})$) is then set by the lower four bits of the address data of I/O address $40(\mathrm{H})$, data can be written or read at I / O address $42(\mathrm{H})$.

Bit map function

As was indicated in the above section on the back-up RAM (8 bit X 16), writing data two or more times in successior. to I/O address $46(\mathrm{H})$ after access of I / O address $40(\mathrm{H})$, also writes data to I / O address $46(\mathrm{H})$. When I / O address $47(\mathrm{H})$ is then read, the last data written to I / O address 46 (H) is obtained when bit 7 of the data written to I/O address $47(\mathrm{H})$ is " 0 ". The data which was written second to last is obtained when bit 7 is " 0 ". Then, the data written to I / O address 47 (H) is shifted up one bit so that data of bit 7 becomes bit 0 . This allows for data to be obtained according :o the level of bit 7 each time I/O address 47 (H) is read.

Printer

The following external circuit is necessary for bi-directional operation.

PBUSY: If a signal is input to the PBUSY pin and read, the same level as input to B 1 is output.

I/O address	R/W	B7	B6	B5	B4	B3	B2	B1	B0
$90(H)$	R								

PSTB: When $B 0$ is set to " 0 " are written to, the level at the $\overline{\text { PSTB }}$ pin goes to " 0 " at the point when the WR sibnal rerurns " 1 ".

I/O adaress	R/W	B7	B6	B5	B4	B3	B2	B1	B0
$90(H)$	W								

PWR: If data is written when PDIR is " 1 " in the output state, a PWR signal having positive polarity according to the pulse width of the $\overline{W R}$ signal is output to the PWR pin. The data is latched and ourput to the external circuit when this signal returns to " 0 ".
The level at the PWR pin is held at " 1 " if the input state is selected while PDIR is " 0 ". When the output state is returned to again, the PWR pin remains at this level. The level goes to " 0 " when access of $91(\mathrm{H})$ is completed.

I/O address	R/W	B7	B6	B5	B4	B3	B2	B1	B0
91 (H)	W	Data							

$\overline{\text { PRD }}$: If data is written when PDIR is " 0 " in the input state. a $\overline{\text { PRD }}$ signal having negative polarity according to the pulse width of the $\overline{\mathrm{RD}}$ signal is output to the $\overline{\mathrm{PRD}}$ pin. This signal opens the gate of the external circuit allowing for data to be read.

I/O address	R'W	B7	B6	B5	B4	B3	B2	B1	B0
$91(R)$	W	Data							

PDIR: If data is written with $\mathrm{B} 1=" 1$ " and $\mathrm{B} 0=" 1$ ", a level of " 1 " is output continuously from the PDIR pin, and the MSX device is set to the output state. If data is written with B1 $=$ " 1 " and $B 0=$ " 0 " a level of " 0 " is output continuously from the PDIR pin, and the MSX device is set to the input state.

$1 / O$ address	R / W	B 7	B 6	B 5	B 4	B 3	B 2	B 1	B 0

The $\overline{\text { PRST }}$ signal can be generated by the external circuit.
When the device is reset, and data is written with $\mathrm{B} 1=$ " 0 " and $\mathrm{B} 0=" 1$ ", the $\overline{\mathrm{PRD}}$ pin outputs " 0 " continuously and the PDIR pin outputs " 1 ". The PRST signal is created from these two signals.
The PRST signal is released by writing data with the levels of the two bits set to another combination than $\mathrm{Bl}={ }^{\circ} 0$ " and $\mathrm{BO}=" 1$ ".

Printer

The following external circuit is necessary for bi-directional operation.

PBUSY: If a signal is input to the PBUSY pin and read, the same level as input to Bl is output.

 when the WR sihnal returns " 1 ".

I/O addiress	R/W	B7	B6	B5	B4	B3	B2	B1	B0
90 (H)	W								

PWR: If data is written when PDIR is " 1 " in the output state, a PWR signal having positive polarity according to the pulse width of the $\overline{W R}$ signal is output to the PWR pin. The data is latched and output to the external circuit when this signal returns to " 0 ".
The level at the PWR pin is held at " 1 " if the input state is selected while PDIR is " 0 ". When the output state is returned to again, the PWR pin remains at this level. The level goes to " 0 " when access of $91(\mathrm{H})$ is completed.

I/O address	R/W	B7	B6	B5	B4	B3	B2	B1	B0
$91(H)$	W	Data							

$\overline{\text { PRD: }}$: If data is written when PDIR is " 0 " in the input state, a $\overline{\text { PRD }}$ signal having negative polarity according to the pulse width of the $\overline{\mathrm{RD}}$ signal is output to the $\overline{\text { PRD }}$ pin. This signal opens the gate of the external circuit allowing for data to be read.

I/O address	RW	B7	B6	B5	B4	B3	B2	B1	B0
$91(R)$	W	Data							

PDIR: If data is written with $B 1=" 1 "$ and $B 0=" 1 "$, a level of " 1 " is output continuously from the PDIR pin, and the MSX device is set to the output state. If data is written with B1 $=" 1$ " and $B 0=" 0$ " a level of " 0 " is output continuously from the PDIR pin, and the MSX device is set to the input state.

The $\overline{\text { PRST }}$ signal can be generated by the external circuit.
When the device is reset, and data is written with $B 1=$ " 0 " and $B 0=" 1$ ", the $\overline{\text { PRD }}$ pin outputs " 0 " continuously and the PDIR pin outputs " 1 ". The PRST signal is created from these two signals.
The PRST signal is released by writing data with the levels of the two bits set to another combination than $\mathrm{Bl}={ }^{"} 0^{"}$ and $\mathrm{B} 0=" \mathrm{I} "$.

Kanji ROM select signal and system control

I/O addresses D8 and D9 (H) are kanji ROM selection signal outputs. The level of these outputs is controlled by the system control indicated below.
Output to the $\bar{K} A N J I$ pin is enabled when data is written when B0 of the system control data is " 1 ".

I/O address	R/W	B7	B6	B5	B4	B3	B2	B1	B0
F5 (H)	W								

Mapper

There are four mapper registers $(0 \sim 3)$ located at I / O addresses $F C(H)$ through $F F(H)$. The effective bits is five for each, $\mathrm{B} 4 \sim \mathrm{~B} 0$, and these correspond to mapper addresses MA18~14. Mapper register pages $0 \sim 3$ are selected according to addresses $A B 15$ and $A B 14$, and the contents are output as an address.
Thus, for example, if mapper addresses MA18~14 are used for 512 K byte of RAM, the 512 K byte indicated by the mapper register is divided into 32 sections. Each of these 16 K byte areas can be se- . lectively accessed by AB 15 and AB14, making the addresses seem to increase.

I/O address	R/W	B7	B6	B5	B4	B3	B2	B1	B0	Register	AB15	AB14
FC (H)	R/W								Mapper register page 0	0	0	
FD	R/W								Mapper register page 1	0	1	
FE	R/W							Mapper register page 2	1	0		
FF	R/W							Mapper register page 3	1	1		

Keyboard bus direction

This signal outputs $11 / 2$ bits at the end of the I / O cycle when data is written to $1 / O$ address AA (H) or $\mathrm{AB}(\mathrm{H})$. Use of a circuit similar to that shown below allows for the number of signal lines between the keyboard and main system to be reduced.

Keyboard bus direction

This signal outputs $1 / 2$ bits at the end of the I / O cycle when data is written to I / O address AA (H) or $\mathrm{AB}(\mathrm{H})$. Use of a circuit similar to that shown below allows for the number of signal lines between the keyboard and main system to be reduced.

4. SSG and general purpose ports

The SSG (Software-controlled Sound Generator) is controlied by 14 registers (these registers can be read with no effect on sound).
Sound generation uses three square wave generator capable of voicing over 8 octaves, a pseudo-random noise generator, 5 bit envelope generator for single shot and repetitious attenuation, volume controller, mixer for combining music (tones) and noise, and a 5 bit D-A convertor. The general purpose port section consists of an input and output port which can be accessed through R / W registers.

Register array

When the upper bits, $D B 7 \sim D B 0$, of the 8 bit address data is $0(H)$, the lower four bits, $\mathrm{DB} 3 \sim \mathrm{DB} 0$, select the 15 registers. Address data which is fetched is held until the next address is fetched, and is not affected by read or write operations.
The contents of the register array is shown below.

Register array

$\begin{gathered} \text { Regis- } \\ \text { ter } \end{gathered}$	Address (H)	Function Bit	B7	B6	B5	B4	B3	B:	B1	B0
Ro	00	Frequency of channel A	8 bit fine tone adjusument							
R1	01						4 bit rough tone adjustment			
$\mathrm{R}=$	02	Frequency of channel B	8 bit fine tone adjusument							
R	03						4 bit rough wone adiusment			
R6	04	Frequency of channel C	8 bit fine tone adjustment							
Rs	05						4 bit rough tooe aciusumedt			
R6	06	Frequency of noise				5 bit noise frequency				
			Port *		Noise			Tone		
Ri	07	General purpose porl and mixer serings	${ }^{1 *}$	${ }^{-0 *}$	C	B	A	C	B	A
R\&	08	Level of channel A				M	L3	L.	11	Lo
Re	09	Level of channel B				M	13	L	L1	Lo
RA	0A	Level of channel C				M	13	L	11	10
RB	OB	Frequency of envelope	8 bit fine adjusument							
RC	OC		8 bit rough adjustment							
RD	OD	Sinape of enveiope					CON	ATT	ALI	HOLD
	OE	Data of general purpose impat port	Refer to general purpose port bit allocation table							
RF	OF	Data of general purpose output port								

* Make sure that the section of R, for ports is at the indicated levels.

General purpose ports

The input port is at address $0 \mathrm{E}(\mathrm{H})$ and the output port at address $0 \mathrm{~F}(\mathrm{H})$. These ports are controlled by the register for output port data hold register RF. The general purpose port bit allocation table on the right shows the relationship between each of the bits, and the input/output pins.

General purpose port bit allocation table

Por:	Bit	Input	Names of connected pins
Input	$\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{4} \\ & \mathrm{~B}_{5} \\ & \mathrm{~B}_{6} \\ & \mathrm{~B}_{7} \end{aligned}$	i	FU'1 or FW2BACK1 or BACK2LAFT1 or LAFT2RIGHT or RIGHT2TRGA1 or TRGA2TRGB1 or TRGB2JIS $/ 50$CMI \quadFWD1 or FWD2 is selected by B6 of the output port. Input is from the FWD2 side when $B 6=" 1 "$.
Output	Bo B_{1} B_{2} B3 B4 Bs B6 B_{7}	0	TRGAI TRGBI TRGA2 TRGB2 STB1 STB2 Input selection for input port B0 \sim B5 (not externally ourput) KANA

Setting of music frequencies (controlled by registers $\mathrm{R}_{0} \sim \mathrm{R}_{5}$)

The frequencies of the square wave generated by the music generators for the three channels (A, B, and C) are set by registers R_{0} through $R_{3} R_{0}$ and R_{1} control channel A, R_{2} and R_{3} are used for channel B, and R_{4} and R_{s} control channel C. The oscillation frequency F_{T} is obtained in the following manner from value of the register TP (decimal). Fø is the clock frequency.

$$
F_{T}=\frac{F D}{32 T P}
$$

12 bit oscillation frequency seting value (TP)

Setting of noise generator (controlled by register R_{6})

The noise frequency F_{N} is obtained from the register value NP (decimal) in the following manner. $F ø$ is the clock frequency.
$F_{\mathrm{N}}=\frac{\mathrm{F} \theta}{32 \mathrm{NP}}$

Noise frequency register R6

5 bit noise frequency seting value (NP)

Settings of mixer (controlled by register R_{1})

The mixer is used to combine music and noise components. The combination is determined by bits $B_{s} \sim B_{0}$ of register R_{i} Sound is output when a " 0 " is written to the register. Thus, when both the noise and tone are " 0 ", the output is combined by the mixer. Whichever is " 0 " is output, and nothing is output when both are " 1 ".

Mixer setting register R_{7}

Level control (controlled by registers $\mathrm{R}_{*} \sim \mathrm{R}_{4}$)

The audio level output from the D/A convertors for the three channels (A. B, and C) is adjusted by registers R_{s}, R_{9}, and R_{A}). Mode M selects whether the level is fixed (when $M=0$) or variable $(M=1)$. When $M=0$, the level is determined from one of 16 by level selection signals L_{3}, L_{2}, L_{i}, and L_{0} which compromise the lower four bits. When $M=1$, the level is determined by the 5 bit output of $E_{4}, E_{3}, E_{2}, E_{1}$, and E_{0} of the built-in envelope generator. This level is variable as $E_{\mathcal{A}} \sim E_{0}$ change over time.

Level setting registers
$\left[\begin{array}{l}R_{8}: \text { Channel A } \\ \mathrm{R}_{9}: \text { Channel B } \\ \mathrm{R}_{\mathrm{s}}: \text { Channel C }\end{array}\right]$

Setting of envelope frequency (controlled by registers R_{B} and R_{c})

The envelope repetition frequency F_{E} is obtained as follows from the envelope frequency setting value E_{p} (decimal). $F \varnothing$ is the clock frequency.

$$
F_{E}=\frac{F \varnothing}{512 E P}
$$

Envelope shape control (controlled by register R_{D})

The envelope level is determined by the envelope generator using the 5 bits La $\sim L_{0}$. The shape of this envelope is created by increasing, decreasing, stopping, or repeating the counter for the envelope generator. The shape is controlled by bits $B_{3} \sim B_{0}$ of the register R_{D}.

Envelope shape control register R_{D}

Envelope shape control signals

The envelope can take the shapes shown in the table below according to combinations of the CONT, ATT, ALT, and HOLD signals.

Table of envelope shapes

B_{3}	B_{2}	B_{1}	Bo	
CONT	ATT	ALT	HOLD	sb
0	0	x	x	$\xrightarrow{>}$
0	1	x	x	$\xrightarrow{2}$
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

$\rightarrow|1 / f \mathrm{E}|-$ Reperition period of envelope

D-A Convertor

When the D-A convertor normalizes the maximum amplitude to 1 V , the output changes as shown in the diagrams below. This conversion from linear input to logarithmic output provides a wide dynamic range and a natural feeling of attenuation.

Fig. 1 Output level of DA convertor The subscripts on the left half of the diagram are the fixed levels of the selection signals $L_{3}, L_{2} L_{1}$, and L_{0} converted into decimal values. The subscripts on the right side are decimal expressions of the envelope counter output signals $E_{1}, E_{3}, E_{2}, E_{1}$, and E_{0}.

Fig. 2 Output waveform of single tone with envelope $\left(R_{D}=\operatorname{XXXX1110}\right)$

Fig. 3 Output waveform from mixing of three sounds with fixed level $\left(R_{p} \sim R_{n}=X X X X 1100\right)$

Sound output SSGSNDL and SSGSNDR

Of the music signals generated on channels A, B, and C by the data set in the registers, channel B is output from the SSGSNDL pin and channel C is output from the SSGSNDR pin. Channel A is the mixed signal from the SSGSNDL and SSGSNDR pins. Output is thus stereo output having left and right output signals. Monaural output is also possible by shorting the the SSGSNDL and SSGSNDR pins when not in use.

Possible configuration for stereo output

Possible configuration for monaural output

5. Clock and RAM (4 bit $\times 26$)

The clock section is connected to the crystal oscillation circuit and provides second, minute, hour. day of the week, day, month, and year clock counter functions, and minute, hour, day of the week, and day alarm registers. Control such as setting and reading the clock data for time and calender and alarm data is carried out in this section. All of this data can be backed up.

Address allocations and initial state of counters and registers

Regardless of the value of the upper four bits of the 8 bit address data, the mode is selected from the low four bits $\mathrm{DB}_{3} \sim \mathrm{DB}$ o and the four modes indicated by the address $\times \mathrm{D}(\mathrm{H})$ modes registers M1 and M0. Addresses $\times 0(\mathrm{H}) \sim \times \mathrm{C}(\mathrm{H})$ can be are both writable and readable. Address $\times \mathrm{D}(\mathrm{H}) \sim$ $X F(H)$ is write only, and has no effect on the mode.
The state of the counters and registers is indeterminate when the power is turned on. They must be set by writing the prescribed values.

Allocation of addresses and functions

Address (H)	Function Bit	B3	B2	B1	B0
$\times \mathrm{D}$	Mode register	Timer EN	Alarm EN	Mode	
				M1	Mo
$\times \mathrm{E}$	Test register	Test			
		T3	I2	T1	To
$\times \mathrm{F}$	Reset controlier $16 / 1 \mathrm{~Hz}$ register	1Hz	$\left\lvert\, \begin{gathered}16 \mathrm{HZ} \\ \mathrm{ON}\end{gathered}\right.$		Alarm

Note: The day of the week connter counts between 0 and 7 . The relauionship between actual day of the . week and counter value can be determined as desired.

Mode setting and alarm/timer EN function (address x $\mathrm{D}(\mathrm{H})$)

The 4 bit mode register consists of M_{1} and M_{0} for switching the mode functions and two bits for the timer EN and alarm EN.

Mode	\mathbf{M}_{1}	\mathbf{M}_{0}	Description
0	0	0	Time and calender can be set and read
1	0	1	Alarm, 12/24 selection. and leap year can be set and read
2	1	0	RAM (4 bit $\times 13$) is both readable and writable
3	1	1	RAM (4 bit $\times 13$) is both readable and writable

Function	Level	Description
Alarm	0	Alarm signal not output to $\overline{\mathrm{AML}}$ pin
EN	1	Alarm signal output to $\overline{\mathrm{AML}}$ pin
	0	Counter stopped for other than seconds
EN	1	Clock started

Reset control function and $16 \mathrm{~Hz} / 1 \mathrm{~Hz}$ register setting (address $\times \mathrm{F}(\mathrm{H})$)

Alarm reset and timer reset function during the data write, and not have registers. There are registers for 16 Hz ON and 1 Hz ON. These function in the following manner.

Function	Level	Description
Alarm RESET	1	All alarm registers reset upon write.
Timer RESET	1	Counter is reset from seconds upon write.
16 Hz ON	0	16 Hz signal ourpur to $\overline{\mathrm{ALM}}$ pin.
1 Hz ON	0	1 Hz signal ourpur to $\overline{\mathrm{ALM}}$ pin.

Test registers (addresses $\times \mathrm{E}(\mathrm{H})$)

$T_{3} \sim T_{0}$ are registers for test purposes. Tests are performed for all except test 0 (operation as clock). When using the clock for the first time, set all bits to level " 0 " in order to perform test 0 (clock).

Test	T_{3}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{0}$	Description
0	0	0	0	0	Operation as clock
1	0	0	0	1	Test 1 selected.
2	0	0	1	0	Test 2 selected
3	0	0	1	1	Test 3 selected. Ourput to ALM $\overline{\text { pin }}$
4	0	1	0	0	Test 4 selected.
8	1	0	0	0	Test 8 selected.

Setting of $12 / 24$ selector (mode 1 , address \times A (H))

Selection of operation as a 12 hour clock or 24 hour clock is possible by writing the level shown in the table below. Set the time after making this setting.

Function	Level	Description
$12 / 24$ hour selector	0	Operation as 12 hour clock. When this mode is selected, the 10 hour counter and B1 of the alarm register indicated AM or PM. AM is selected when B1 is "0", and PM when " 1 ".
	1	Operation as 24 hour clock.

Setting of leap year (mode 1, address \times B (H))

The leap year setting can be made by setting the levels shown in the table below. The time and calender settings are made after this setting is made. This calender is incremented together with the year calender.

Function	B_{1}	$\mathrm{~B}_{0}$	Description
Leap year	0	0	Operation with this year as leap calender year
	0	1	Three years from now
	1	0	Year after next as leap year
	1	1	Next year as leap year

Setting and reading the time and calender (mode 0 , address $\times 0(\mathrm{H}) \sim \times \mathrm{C}(\mathrm{H})$)

The addresses can be fixed by the functions indicated in the table for address allocations and functions. The clock counter can be set by writing effective values for time and calender clock data. Data is read in the same manner. The address is fixed and the bits are read to obtain the clock data. The level of bits which are not effective is always " 0 ".
If the time of the second, minute, hour, day of the week, day or year counter (clock counter) advances while setring or reading the clock data, it is not possible to set or read the proper values for the ciock data.
Thus when setting the clock data, generate a timer reset and set all necessary clock data during this second. An alternate procedure is to generate a clock EN to stop incremention of all counters except seconds, generate a timer reset, set all necessary clock data within one second, and then update the clock with the timer EN. When reading the clock data, read it twice and compare the results to determine usable data. Another approach is to set the clock timer to the operational state again with the timer EN and read the data. The change in the 1 second signal which occurs while the counter is stopped for all counting above one second, will be adjusted when clock is restarted. Approximately $100 \& m u . s$ are required for this correction. Be sure not read the time again during this period.

Alarm setting and reading (mode 1 , address $\times 2(\mathrm{H})-\times 8(\mathrm{H})$)

The alarm registers can be set by fixing the addresses by the functions indicated in the table for address allocations and functions. and then by uriting valid values to the bits for time and calender alarms. The data in the alarm registers can be obtained in the same manner by fixing the addresses. and reading the bits.
When the contents of the minute, hour, day of the week, day and year alarm registers is the same as the contents of the clock calender (and alarm EN register is set to output state), a level "0" signal is output to the $\overline{\text { ALM }}$ pin.
The alarm register is reset by the alarm RESET bit. Then. the data written to the alarm register and clock counter are made the same. Regarding alarm registers which were not written to. owiput is to the $\overline{\mathrm{ALM}}$ pin as the data of both were already the same.
$\overline{\text { ALM }}$ pin output (external load resistance is needed as open drain)

The signals controlled by the alarm En, $16 \mathrm{HZON}, 1 \mathrm{HZON}$, and test registers can be output simultaneously from this pin. Set the level of the various registers so that only the required signals are output.

RAM (4 bit $\times 26$) (mode 2 and 3, address $\times 0(\mathrm{H}) \sim \times \mathrm{C}(\mathrm{H})$)
This RAM area consists of a RAM area accessed at address $\times 0(\mathrm{H}) \sim \times \mathrm{C}(\mathrm{H})$ in mode 2 , and a RAM area accessed at address $\mathrm{X} 0(\mathrm{H}) \sim \mathrm{XC}(\mathrm{H})$ in mode 3 .

6. Oscillation circuit

A sample oscillation circuit is shown on the right.
Note that the accuracy of the clock will suffer if the oscillation circuit is effected by external noise. The voltage characteristics and temperature characteristics of the clock osciliation circuit, back-up voltage and current characteristics and back-up current and C3 characteristics are shown below. All parts other than the device itself are kept at room temperature during measurement of temperature characteristics.

9. Electrical characteristics

Absolute maximum ratings

Item	Rated value	Units
Power supply voltage (VDD)	$-0.3 \sim 7.0$	V
Inpu: pin voltage	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Operational surrounding temperature	$0 \sim 70$	${ }^{\circ} \mathrm{C}$

10. Recommended operating conditions

liem	Symbol	Minimum	Typical	Maximum	Units
Power supply voltage	VDD	4.75	5.00	5.25	V
Data retention voltage	VDE	2.0		5.25	V
Frequency for clock	FX		32.768		KHz

11. DC characteristics

1tem	Symbol	Conditions	Minimum	Typical	Maximum	Units
Lou level input voltage 1	$V_{\text {ILI }}$	Other than ($\left.\overline{\mathrm{X}}_{0} \sim \overline{\mathrm{X}}_{7}, \mathrm{XIN}\right)$	-0.3		0.8	V
High level input voliage 1	$\mathrm{V}_{\text {LHI }}$	Other than ($\overline{\mathrm{X}}_{0} \sim \bar{X}_{r}$, XIN $)$	2.0		VDD	v
Low level inpur voitage 2	$\mathrm{V}_{1}{ }^{2}$	($\left.\overline{\mathrm{X}}_{0} \sim \overline{\mathrm{X}}_{7}, \mathrm{XIN}\right)$	-0.3		1.5	v
High level input voltage 2	VIH^{2}	$\left(\bar{X}_{0} \sim \bar{X}_{1}, \mathrm{XIN}\right)$	3.5		VDD	V
Low level output voltage 1	VOL	$\mathrm{IOL}=$ Note 0)	0		0.5	v
High level ourput voltage 1	VOH	$\mathrm{IO}=$ Noie 0)	4.0		VDD	V
Input curtent	I	$\mathrm{V}^{\prime} \mathrm{N}=0^{\text {V }}$	50		500	$\mu \mathrm{A}$
Input leak current	IL	$V_{\text {IN }}=0 \sim 5^{\circ}$			± 10	$\mu \mathrm{A}$
Output leak current	ILo	$V_{\text {IN }}=0 \sim 5^{\prime}$			± 10	$\mu . A$
Power supply voltage (hold)	IDB	$V_{D B}=2.0{ }^{\text {V }}$			15	$\mu \mathrm{A}$
Power supply voltage (operating)	IDD	$V_{D B}=5.25^{\circ}$			35	$\mu \mathrm{A}$

Note 0) $102=10 \mathrm{~mA}$: Applies to $\overline{\mathrm{WAIT}}, \overline{\mathrm{CAPS}}$, and $\overline{\mathrm{KANA}}$ pins Io: $=2.4 \mathrm{~mA}$:Applies to output pins other than $\overline{\mathrm{WAIT}}, \overline{\mathrm{CAPS}}$, and $\overline{\mathrm{KANA}}$ I он $=0.2 \mathrm{~mA}:$ Applies to all output pins other than open drain.

12. AC characteristics Note 1)

Clock timing

| Item | Symbol | Conditions | Minimum | Typical | Maximum | Lnits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock period | Tc | | | 280 | | ns |
| Rise time of clock | Tør | | | | 30 | ns |
| Fall time of clock | Tør | | | | 30 | ns |

Write timing

ltem	Symbol	Conditions	Minimum	Typical	Maximum	Units
Assurred time prior to data $\overline{W R}$ off	TwRS			300		ns
Hold time from data $\overline{W R}$ off	TwRH			0		ns
Delay time from $\overline{W R}$ off of output data	TWRD	Note 2) $\mathrm{CL}=100 \mathrm{PF}$			250	ns
Delay time from output data	TDD	Note 3) $\mathrm{CL}=100 \mathrm{PF}$			250	ns

Read timing

Note 1) The various timing characteristics assume that direct connection is made to the address bus, data bus, and control bus signals of the CPU.

Note 2) Applies to $\mathrm{YA}, \mathrm{YB}, \mathrm{YC}, \mathrm{YD}, \mathrm{REM}, \mathrm{CMO}, \overline{\mathrm{CAPS}}$, and PPISND pins.
Note 3) Applies when TRGA1, TRGB1, STB1, STB2, TRGA2, TRGB2, $\overline{K A N A}$, PDIR, PWR, and $\overline{\text { PRD pins are controlled by data bus. }}$

Note 4) Applies to $\overline{\mathrm{X} 0}, \overline{\mathrm{X} 1}, \overline{\mathrm{X} 3}, \overline{\mathrm{X} 3}, \overline{\mathrm{X} 4}, \overline{\mathrm{X} 5}, \overline{\mathrm{X} 6}, \overline{\mathrm{X} 7}$, FWD1, BACK1, LEFI1, RIGHT1, TRGA1, TRGB1, FWD2, BACK2, LEFT2, RIGHT2, IRGA2, IRGB2, CMI, and PBUSY pins.

Reset timing

Item	Symbol	Conditions	Minimum	Typical	Maximum	Linits
RESET $\dagger \overline{X_{r}} \downarrow$ delay time	Trs \bar{X}	$\overline{X_{n}}=\left(\overline{X_{1}}, \overline{X_{2}}, \overline{X_{3}}, \overline{X_{s}}\right.$			150	ns
RESET $\downarrow \overline{\mathrm{Xa}_{0}} \uparrow$ delay time	TRSX) $\overline{\left.\overline{\lambda_{6}}, \overline{\chi_{7}}\right)}$	50			ns
RESET \uparrow RESET \downarrow time	Trsw		5.6			$\mu \mathrm{s}$
VDD (4.5) \uparrow RESET \downarrow delay time	Tvdess		5.6			$\mu \mathrm{s}$
VDD (4.5) \downarrow RESET \uparrow delay time	TVDRS				0	$\mu \mathrm{s}$

Analog output

Item	Symbol	Conditions	Minimum	Typical	Maximum	Units
Output voltage from channel A to SSGSNDL	$V_{\text {Al }}$		0.28	0.35	0.44	$V_{p p}$
Output voluage from channel A to SSGSNDR	Var	Note 7) and Note 9)	0.28	0.35	0.44	$V_{p p}$
Output voltage from channel B to SSGSNDL	Vbl		0.52	0.66	0.83	$V_{p p}$
Ourput volrage from channel C to SSGSNDR	$V_{C R}$		0.52	0.66	0.83	$V_{p p}$
Output voltage when SSGSNDR and SSGSNDL are connected	$V_{(L+R)}$	Note 8) and Note 9)	0.42	0.53	0.67	V_{pp}

Note 7) Circuit for separate output of L and R

Note 8) Circuit for combined output of L and R

Note 9) State of registers during SSGSNDL and SSGSNDR output voltage measurement
Music frequency setting
register $: 0 \mathrm{FF}(\mathrm{H})(\simeq 440 \mathrm{~Hz})$
Volume control register: OF (H) (max. volume)
Mixer register
: Separate output of A, B, and C channels

Timing of M1 cycle, Memory read/write cycle, and I/O cycle

Item		Symbol	Conditions	Minimum	$\begin{gathered} \text { Maxi- } \\ \text { mum } \end{gathered}$	Units
	delay time	TMRTA	$C L=100 \mathrm{PF} \mathrm{RL}^{2}=1 \mathrm{~K}$		150	ns
Clok \downarrow WAIT	.	T $\overline{\text { ® }}{ }^{\text {a }}$			150	ns
$\overline{\text { MREQ }}$! $\overline{\text { RAS }}$	*	TMREA	$\mathrm{CL}=100 \mathrm{PF} \mathrm{RL}=3.9 \mathrm{~K} \Omega$		70	-
$\overline{\text { MREQ } \dagger ~ \overline{R A S ~}} \dagger$	*	tmran	-		70	-
Clok \dagger RAS 1	.	Tø反̄	-		70	-
Clok $1 \overline{\mathrm{RAS}} \dagger$	-	T $\bar{\varnothing}_{\text {R }}$	-	90	180	-
Clok \dagger MPX \dagger	-	томх	-		70	-
MREQ ¢ MPX \downarrow	-	TmrMX	-		70	-
RAS \downarrow MPX \dagger	-	тймх	*	50		"
Clok \downarrow CAS \downarrow	-	Tб̄¢^	-		70	-
$\overline{\text { MREQ }} \uparrow \overline{\text { CAS }} \dagger$	-	tmrca	*		70	*
Clok \dagger CAS \dagger	.		-		70	-
RD ! WE i	*	Tøwe	*		70	-
Clok ¢ W'E i	.	T $\overline{\text { D }} \overline{\text { EE }}$	-		70	-
MREQ 1 * $\overline{\text { CS }}$ +	-	tmrcs	-		70	-
MREQ \dagger * ${ }^{\text {CSn }}$ ¢	*	Tmres	-		70	-
MREQ 1 *SLTn \downarrow	-	TMRSL	-		70	-
MREQ \dagger *SLTE \dagger	-	Tmrst	*		70	-
MREQ ${ }^{\text {P SLTAn }}$	-	TMRST	-		70	"
MREQ \dagger *SLTnn \dagger	-	TmRst	-		70	-
ADR *MAn	-	Tdma	-		120	-
ADR(OFF) *MAn(OFF)	-	tadma	*		120	*
RD \downarrow VDPCR \downarrow	-	TEDVE	-		70	-
RD i $\overline{\text { DDPCR }}$;	-	Trdor	-		70	-
Clok \dagger VDPCW ${ }_{1}$	-	T \varnothing ज $\bar{\square}$	*		70	-
WR i VDPCW;	-	Twrvw	*		40	*
IORQ ! KANI !	-	TIOKN	-		70	\cdots
IORQ i RANJ ;	-	TIokn	-		70	-
RD ! PRD !	-	T $\overline{\text { ¢ }}$ ¢ $\overline{\mathrm{F}}$	*		150	-
RD i PRD ;	-	TrdPr	-		150	-
$\overline{W R} \downarrow$ PWR \dagger	-	Twipw	-		150	-
W'R i PWR \downarrow	-	TwR FW	-		150	-
Clok \dagger KBDIR \dagger	-	T $\mathrm{T}_{\text {KD }}$	-		150	-
Clok ! KBDIR !	-	T $\overline{\bar{\square}} \overline{\text { ® }}$	-		150	-

Note 5: Refer to Note 10 for those marked with asterisks.
Note 6: The load circuit is shown on the right.

Clock timing

Clockip)

	$" \mathrm{H}^{*}$	$" \mathrm{~L} "$
CLOCK (\varnothing)	VDD-0.6"	0.8^{v}
OUT PUT	2.0^{v}	0.8^{v}
IN PUT	2.0^{v}	0.8^{v}
FLOAT	Δ^{v}	$\pm 0.5^{v}$

Write timing

Read timing

M1 cycle timing

Note 10: Refer to the following for signals marked with asterisks
$\overline{\mathrm{CAS}}(\mathrm{R})$: $\overline{\mathrm{CAS}}$ signal in RAS only refresh mode
$\overline{\mathrm{CAS}}(\mathrm{H}): \overline{\mathrm{CAS}}$ signal in hidden refresh mode
$\overline{\mathrm{CAn}}: \overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}, \overline{\mathrm{CS} 12}$, and $\overline{\mathrm{CSO}}$ and $\overline{\mathrm{CS} 01}$ of $\overline{\mathrm{SLT} 02 / \mathrm{CSO}}$ and ; us on $\overline{\mathrm{SLT03/CS01}}$
$\overline{\mathrm{SLTn}}: \overline{\mathrm{SLTI}}$ and SLT2 output
$\overline{\text { SLTn }}: \overline{\text { SLT3 } / 30, ~} \overline{\text { SLT31 }}, \overline{\text { SLT32 }}, \overline{\text { STL33 }}, \overline{\text { SLT0/00 }}, \overline{\text { SLT01 }}, \overline{\text { SLT02/CS0 }}, \overline{\text { SLT02 of SLT03/CS01 }}$, and SLT03 output
MAn : MA 14 , MA1s, MA16, MA17, and MA1s output of MA18/KBDIR

Memory read/write cycle timing

Note 11: Refer to Note 10 for signals marked with asterisk

Note 12: The $\overline{\mathrm{VDPCR}}$ and $\overline{\mathrm{VDPCW}}$ signals marked with asterisks indicate the timing when " 1 " is applied to the $\overline{\mathrm{X} 7}$ pin during reset.
applied to the $\overline{X 7}$ pin during reset.
A 1 bit wait is inserted after $\mathrm{T} w$ when " 0 " is applied to the $\overline{\mathrm{X} 7}$ pin during reset.

I/O cycle timing (2)

Note 13: The signal marked with an asterisk is the KBDIR output of MA. 18 when " 1 " is applied to the $\overline{\mathrm{X} 5}$ during reset.

Reset timing

Voo

14. External view

